📓
Algorithms
  • Introduction to Data Structures & Algorithms with Leetcode
  • Strings
    • Dutch Flags Problem
      • List Partitoning
    • Counters
      • Majority Vote
      • Removing Parentheses
      • Remove Duplicates from Sorted Array
    • Maths
      • Lone Integer
      • Pigeonhole
      • Check If N and Its Double Exist
      • Find Numbers with Even Number of Digits
    • Two Pointers
      • Remove Element
      • Replace Elements with Greatest Element on Right Side
      • Valid Mountain Array
      • Sort Array by Parity
      • Squares of a Sorted Array
      • Max Consecutive Ones
    • Sliding Window
      • Max Consecutive Ones 3
    • Stacks
      • Balanced Brackets
    • General Strings & Arrays
      • Move Zeros
      • Unique Elements
      • Merge Sorted Array
    • Matrices
      • Valid Square
      • Matrix Search Sequel
  • Trees
    • Untitled
  • Recursion
    • Introduction
    • Backtracking
      • Permutations
  • Dynamic Programming
    • Introduction
    • Minimum (Maximum) Path to Reach a Target
      • Min Cost Climbing Stairs
      • Coin Change
      • Minimum Path Sum
      • Triangle
      • Minimum Cost to Move Chips to The Same Position
      • Consecutive Characters
      • Perfect Squares
    • Distinct Ways
      • Climbing Stairs
      • Unique Paths
      • Number of Dice Rolls with Target Sum
    • Merging Intervals
      • Minimum Cost Tree From Leaf Values
    • DP on Strings
      • Levenshtein Distance
      • Longest Common Subsequence
  • Binary Search
    • Introduction
      • First Bad Version
      • Sqrt(x)
      • Search Insert Position
    • Advanced
      • KoKo Eating Banana
      • Capacity to Ship Packages within D Days
      • Minimum Number of Days to Make m Bouquets
      • Split array largest sum
      • Minimum Number of Days to Make m Bouquets
      • Koko Eating Bananas
      • Find K-th Smallest Pair Distance
      • Ugly Number 3
      • Find the Smallest Divisor Given a Threshold
      • Kth smallest number in multiplication table
  • Graphs
    • Binary Trees
      • Merging Binary Trees
      • Binary Tree Preorder Traversal
      • Binary Tree Postorder Traversal
      • Binary Tree Level Order Traversal
      • Binary Tree Inorder Traversal
      • Symmetric Tree
      • Populating Next Right Pointers in Each Node
      • Populating Next Right Pointers in Each Node II
      • 106. Construct Binary Tree from Inorder and Postorder Traversal
      • Serialise and Deserialise a Linked List
      • Maximum Depth of Binary Tree
      • Lowest Common Ancestor of a Binary Tree
    • n-ary Trees
      • Untitled
      • Minimum Height Trees
    • Binary Search Trees
      • Counting Maximal Value Roots in Binary Tree
      • Count BST nodes in a range
      • Invert a Binary Tree
      • Maximum Difference Between Node and Ancestor
      • Binary Tree Tilt
  • Practice
  • Linked Lists
    • What is a Linked List?
    • Add Two Numbers
      • Add Two Numbers 2
    • Reverse a Linked List
    • Tortoise & Hare Algorithm
      • Middle of the Linked List
  • Bitshifting
    • Introduction
  • Not Done Yet
    • Uncompleted
    • Minimum Cost For Tickets
    • Minimum Falling Path Sum
Powered by GitBook
On this page

Was this helpful?

  1. Dynamic Programming
  2. DP on Strings

Levenshtein Distance

PreviousDP on StringsNextLongest Common Subsequence

Last updated 4 years ago

Was this helpful?

This question is a leetcode hard, but in my opinion it is easier than the next problem which is a leetcode medium.

Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2.

You have the following three operations permitted on a word:

  • Insert a character

  • Delete a character

  • Replace a character

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation: 
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

For those having difficulty cracking dynamic programming solutions, I find it easiest to solve by first starting with a naive, but working recursive implementation. It's essential to do so, because dynamic programming is basically recursion with caching. With this workflow, deciphering dynamic programming problems becomes just a little more manageable for us normal people. :)

Thought process: Given two strings, we're tasked with finding the minimum number of transformations we need to make to arrive with equivalent strings. From the get-go, there doesn't seem to be any way around trying all possibilities, and in this, possibilities refers to inserting, deleting, or replacing a character. Recursion is usually a good choice for trying all possilbilities.

Whenever we write recursive functions, we'll need some way to terminate, or else we'll end up overflowing the stack via infinite recursion. With strings, the natural state to keep track of is the index. We'll need two indexes, one for word1 and one for word2. Now we just need to handle our base cases, and recursive cases. What happens when we're done with either word? Some thought will tell you that the minimum number of transformations is simply to insert the rest of the other word. This is our base case. What about when we're not done with either string? We'll either match the currently indexed characters in both strings, or mismatch. In the first case, we don't incur any penalty, and we can continue to compare the rest of the strings by recursing on the rest of both strings. In the case of a mismatch, we either insert, delete, or replace. To recap:

https://leetcode.com/problems/edit-distance/
Loading...LeetCode
Logo