📓
Algorithms
  • Introduction to Data Structures & Algorithms with Leetcode
  • Strings
    • Dutch Flags Problem
      • List Partitoning
    • Counters
      • Majority Vote
      • Removing Parentheses
      • Remove Duplicates from Sorted Array
    • Maths
      • Lone Integer
      • Pigeonhole
      • Check If N and Its Double Exist
      • Find Numbers with Even Number of Digits
    • Two Pointers
      • Remove Element
      • Replace Elements with Greatest Element on Right Side
      • Valid Mountain Array
      • Sort Array by Parity
      • Squares of a Sorted Array
      • Max Consecutive Ones
    • Sliding Window
      • Max Consecutive Ones 3
    • Stacks
      • Balanced Brackets
    • General Strings & Arrays
      • Move Zeros
      • Unique Elements
      • Merge Sorted Array
    • Matrices
      • Valid Square
      • Matrix Search Sequel
  • Trees
    • Untitled
  • Recursion
    • Introduction
    • Backtracking
      • Permutations
  • Dynamic Programming
    • Introduction
    • Minimum (Maximum) Path to Reach a Target
      • Min Cost Climbing Stairs
      • Coin Change
      • Minimum Path Sum
      • Triangle
      • Minimum Cost to Move Chips to The Same Position
      • Consecutive Characters
      • Perfect Squares
    • Distinct Ways
      • Climbing Stairs
      • Unique Paths
      • Number of Dice Rolls with Target Sum
    • Merging Intervals
      • Minimum Cost Tree From Leaf Values
    • DP on Strings
      • Levenshtein Distance
      • Longest Common Subsequence
  • Binary Search
    • Introduction
      • First Bad Version
      • Sqrt(x)
      • Search Insert Position
    • Advanced
      • KoKo Eating Banana
      • Capacity to Ship Packages within D Days
      • Minimum Number of Days to Make m Bouquets
      • Split array largest sum
      • Minimum Number of Days to Make m Bouquets
      • Koko Eating Bananas
      • Find K-th Smallest Pair Distance
      • Ugly Number 3
      • Find the Smallest Divisor Given a Threshold
      • Kth smallest number in multiplication table
  • Graphs
    • Binary Trees
      • Merging Binary Trees
      • Binary Tree Preorder Traversal
      • Binary Tree Postorder Traversal
      • Binary Tree Level Order Traversal
      • Binary Tree Inorder Traversal
      • Symmetric Tree
      • Populating Next Right Pointers in Each Node
      • Populating Next Right Pointers in Each Node II
      • 106. Construct Binary Tree from Inorder and Postorder Traversal
      • Serialise and Deserialise a Linked List
      • Maximum Depth of Binary Tree
      • Lowest Common Ancestor of a Binary Tree
    • n-ary Trees
      • Untitled
      • Minimum Height Trees
    • Binary Search Trees
      • Counting Maximal Value Roots in Binary Tree
      • Count BST nodes in a range
      • Invert a Binary Tree
      • Maximum Difference Between Node and Ancestor
      • Binary Tree Tilt
  • Practice
  • Linked Lists
    • What is a Linked List?
    • Add Two Numbers
      • Add Two Numbers 2
    • Reverse a Linked List
    • Tortoise & Hare Algorithm
      • Middle of the Linked List
  • Bitshifting
    • Introduction
  • Not Done Yet
    • Uncompleted
    • Minimum Cost For Tickets
    • Minimum Falling Path Sum
Powered by GitBook
On this page

Was this helpful?

  1. Linked Lists
  2. Tortoise & Hare Algorithm

Middle of the Linked List

PreviousTortoise & Hare AlgorithmNextIntroduction

Last updated 4 years ago

Was this helpful?

Given a non-empty, singly linked list with head node head, return a middle node of linked list.

If there are two middle nodes, return the second middle node.

Input: [1,2,3,4,5]
Output: Node 3 from this list (Serialization: [3,4,5])
The returned node has value 3.  (The judge's serialization of this node is [3,4,5]).
Note that we returned a ListNode object ans, such that:
ans.val = 3, ans.next.val = 4, ans.next.next.val = 5, and ans.next.next.next = NULL.
# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, val=0, next=None):
#         self.val = val
#         self.next = next
class Solution:
    def middleNode(self, head: ListNode) -> ListNode:
        tmp = head
        while tmp and tmp.next:
            head = head.next
            tmp = tmp.next.next
        return head

We need two pointers, one is head with one step each iteration, and the other is tmp with two steps each iteration. So when the tmp reaches the end of the list, the head just reaches the half of it, which is exactly what we want.

And one thing needs to be considered additionaly is that the number of the node can be odd and even, which may affect the termination condition of the iteration. To solve this, my idea is to try the algorithm in some small set of the examples, like the examples provided by the official. And you will find that if the tmp reaches Null or tmp.next reaches Null, the head is the result.

Explanation from .

O(n) time and O(1) space.

On BinarySearch this is 100% fastest.

https://leetcode.com/problems/middle-of-the-linked-list/submissions/
here