📓
Algorithms
  • Introduction to Data Structures & Algorithms with Leetcode
  • Strings
    • Dutch Flags Problem
      • List Partitoning
    • Counters
      • Majority Vote
      • Removing Parentheses
      • Remove Duplicates from Sorted Array
    • Maths
      • Lone Integer
      • Pigeonhole
      • Check If N and Its Double Exist
      • Find Numbers with Even Number of Digits
    • Two Pointers
      • Remove Element
      • Replace Elements with Greatest Element on Right Side
      • Valid Mountain Array
      • Sort Array by Parity
      • Squares of a Sorted Array
      • Max Consecutive Ones
    • Sliding Window
      • Max Consecutive Ones 3
    • Stacks
      • Balanced Brackets
    • General Strings & Arrays
      • Move Zeros
      • Unique Elements
      • Merge Sorted Array
    • Matrices
      • Valid Square
      • Matrix Search Sequel
  • Trees
    • Untitled
  • Recursion
    • Introduction
    • Backtracking
      • Permutations
  • Dynamic Programming
    • Introduction
    • Minimum (Maximum) Path to Reach a Target
      • Min Cost Climbing Stairs
      • Coin Change
      • Minimum Path Sum
      • Triangle
      • Minimum Cost to Move Chips to The Same Position
      • Consecutive Characters
      • Perfect Squares
    • Distinct Ways
      • Climbing Stairs
      • Unique Paths
      • Number of Dice Rolls with Target Sum
    • Merging Intervals
      • Minimum Cost Tree From Leaf Values
    • DP on Strings
      • Levenshtein Distance
      • Longest Common Subsequence
  • Binary Search
    • Introduction
      • First Bad Version
      • Sqrt(x)
      • Search Insert Position
    • Advanced
      • KoKo Eating Banana
      • Capacity to Ship Packages within D Days
      • Minimum Number of Days to Make m Bouquets
      • Split array largest sum
      • Minimum Number of Days to Make m Bouquets
      • Koko Eating Bananas
      • Find K-th Smallest Pair Distance
      • Ugly Number 3
      • Find the Smallest Divisor Given a Threshold
      • Kth smallest number in multiplication table
  • Graphs
    • Binary Trees
      • Merging Binary Trees
      • Binary Tree Preorder Traversal
      • Binary Tree Postorder Traversal
      • Binary Tree Level Order Traversal
      • Binary Tree Inorder Traversal
      • Symmetric Tree
      • Populating Next Right Pointers in Each Node
      • Populating Next Right Pointers in Each Node II
      • 106. Construct Binary Tree from Inorder and Postorder Traversal
      • Serialise and Deserialise a Linked List
      • Maximum Depth of Binary Tree
      • Lowest Common Ancestor of a Binary Tree
    • n-ary Trees
      • Untitled
      • Minimum Height Trees
    • Binary Search Trees
      • Counting Maximal Value Roots in Binary Tree
      • Count BST nodes in a range
      • Invert a Binary Tree
      • Maximum Difference Between Node and Ancestor
      • Binary Tree Tilt
  • Practice
  • Linked Lists
    • What is a Linked List?
    • Add Two Numbers
      • Add Two Numbers 2
    • Reverse a Linked List
    • Tortoise & Hare Algorithm
      • Middle of the Linked List
  • Bitshifting
    • Introduction
  • Not Done Yet
    • Uncompleted
    • Minimum Cost For Tickets
    • Minimum Falling Path Sum
Powered by GitBook
On this page

Was this helpful?

  1. Strings
  2. Two Pointers

Sort Array by Parity

PreviousValid Mountain ArrayNextSquares of a Sorted Array

Last updated 4 years ago

Was this helpful?

Given an array A of non-negative integers, return an array consisting of all the even elements of A, followed by all the odd elements of A.

You may return any answer array that satisfies this condition.

Example 1:

Input: [3,1,2,4]
Output: [2,4,3,1]
The outputs [4,2,3,1], [2,4,1,3], and [4,2,1,3] would also be accepted.

We can sort using the sort function.

class Solution(object):
    def sortArrayByParity(self, A):
        A.sort(key = lambda x: x % 2)
        return A

Or we can write all the even elements first, then write all the odd elements.

class Solution(object):
    def sortArrayByParity(self, A):
        return ([x for x in A if x % 2 == 0] +
                [x for x in A if x % 2 == 1])

Approach 3: In-Place

Intuition

If we want to do the sort in-place, we can use quicksort, a standard textbook algorithm.

Algorithm

We'll maintain two pointers i and j. The loop invariant is everything below i has parity 0 (ie. A[k] % 2 == 0 when k < i), and everything above j has parity 1.

Then, there are 4 cases for (A[i] % 2, A[j] % 2):

  • If it is (0, 1), then everything is correct: i++ and j--.

  • If it is (1, 0), we swap them so they are correct, then continue.

  • If it is (0, 0), only the i place is correct, so we i++ and continue.

  • If it is (1, 1), only the j place is correct, so we j-- and continue.

Throughout all 4 cases, the loop invariant is maintained, and j-i is getting smaller. So eventually we will be done with the array sorted as desired.

class Solution(object):
    def sortArrayByParity(self, A):
        i, j = 0, len(A) - 1
        while i < j:
            if A[i] % 2 > A[j] % 2:
                A[i], A[j] = A[j], A[i]

            if A[i] % 2 == 0: i += 1
            if A[j] % 2 == 1: j -= 1

        return A

from .

https://leetcode.com/problems/sort-array-by-parity/
here