📓
Algorithms
  • Introduction to Data Structures & Algorithms with Leetcode
  • Strings
    • Dutch Flags Problem
      • List Partitoning
    • Counters
      • Majority Vote
      • Removing Parentheses
      • Remove Duplicates from Sorted Array
    • Maths
      • Lone Integer
      • Pigeonhole
      • Check If N and Its Double Exist
      • Find Numbers with Even Number of Digits
    • Two Pointers
      • Remove Element
      • Replace Elements with Greatest Element on Right Side
      • Valid Mountain Array
      • Sort Array by Parity
      • Squares of a Sorted Array
      • Max Consecutive Ones
    • Sliding Window
      • Max Consecutive Ones 3
    • Stacks
      • Balanced Brackets
    • General Strings & Arrays
      • Move Zeros
      • Unique Elements
      • Merge Sorted Array
    • Matrices
      • Valid Square
      • Matrix Search Sequel
  • Trees
    • Untitled
  • Recursion
    • Introduction
    • Backtracking
      • Permutations
  • Dynamic Programming
    • Introduction
    • Minimum (Maximum) Path to Reach a Target
      • Min Cost Climbing Stairs
      • Coin Change
      • Minimum Path Sum
      • Triangle
      • Minimum Cost to Move Chips to The Same Position
      • Consecutive Characters
      • Perfect Squares
    • Distinct Ways
      • Climbing Stairs
      • Unique Paths
      • Number of Dice Rolls with Target Sum
    • Merging Intervals
      • Minimum Cost Tree From Leaf Values
    • DP on Strings
      • Levenshtein Distance
      • Longest Common Subsequence
  • Binary Search
    • Introduction
      • First Bad Version
      • Sqrt(x)
      • Search Insert Position
    • Advanced
      • KoKo Eating Banana
      • Capacity to Ship Packages within D Days
      • Minimum Number of Days to Make m Bouquets
      • Split array largest sum
      • Minimum Number of Days to Make m Bouquets
      • Koko Eating Bananas
      • Find K-th Smallest Pair Distance
      • Ugly Number 3
      • Find the Smallest Divisor Given a Threshold
      • Kth smallest number in multiplication table
  • Graphs
    • Binary Trees
      • Merging Binary Trees
      • Binary Tree Preorder Traversal
      • Binary Tree Postorder Traversal
      • Binary Tree Level Order Traversal
      • Binary Tree Inorder Traversal
      • Symmetric Tree
      • Populating Next Right Pointers in Each Node
      • Populating Next Right Pointers in Each Node II
      • 106. Construct Binary Tree from Inorder and Postorder Traversal
      • Serialise and Deserialise a Linked List
      • Maximum Depth of Binary Tree
      • Lowest Common Ancestor of a Binary Tree
    • n-ary Trees
      • Untitled
      • Minimum Height Trees
    • Binary Search Trees
      • Counting Maximal Value Roots in Binary Tree
      • Count BST nodes in a range
      • Invert a Binary Tree
      • Maximum Difference Between Node and Ancestor
      • Binary Tree Tilt
  • Practice
  • Linked Lists
    • What is a Linked List?
    • Add Two Numbers
      • Add Two Numbers 2
    • Reverse a Linked List
    • Tortoise & Hare Algorithm
      • Middle of the Linked List
  • Bitshifting
    • Introduction
  • Not Done Yet
    • Uncompleted
    • Minimum Cost For Tickets
    • Minimum Falling Path Sum
Powered by GitBook
On this page

Was this helpful?

  1. Graphs
  2. Binary Trees

Populating Next Right Pointers in Each Node II

PreviousPopulating Next Right Pointers in Each NodeNext106. Construct Binary Tree from Inorder and Postorder Traversal

Last updated 4 years ago

Was this helpful?

Given a binary tree

struct Node {
  int val;
  Node *left;
  Node *right;
  Node *next;
}

Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL.

Initially, all next pointers are set to NULL.

Follow up:

  • You may only use constant extra space.

  • Recursive approach is fine, you may assume implicit stack space does not count as extra space for this problem.

Example 1:

Input: root = [1,2,3,4,5,null,7]
Output: [1,#,2,3,#,4,5,7,#]
Explanation: Given the above binary tree (Figure A), your function should populate each next pointer to point to its next right node, just like in Figure B. The serialized output is in level order as connected by the next pointers, with '#' signifying the end of each level.

The algorithm is a BFS or level order traversal. We go through the tree level by level. node is the pointer in the parent level, tail is the tail pointer in the child level. The parent level can be view as a singly linked list or queue, which we can traversal easily with a pointer. Connect the tail with every one of the possible nodes in child level, update it only if the connected node is not nil. Do this one level by one level. The whole thing is quite straightforward.

def connect(self, node):
    tail = dummy = Node(0)
    while node:
        tail.next = node.left
        if tail.next:
            tail = tail.next
        tail.next = node.right
        if tail.next:
            tail = tail.next
        node = node.next
        if not node:
            tail = dummy
            node = dummy.next

From .

here
https://leetcode.com/problems/populating-next-right-pointers-in-each-node-ii/