📓
Algorithms
  • Introduction to Data Structures & Algorithms with Leetcode
  • Strings
    • Dutch Flags Problem
      • List Partitoning
    • Counters
      • Majority Vote
      • Removing Parentheses
      • Remove Duplicates from Sorted Array
    • Maths
      • Lone Integer
      • Pigeonhole
      • Check If N and Its Double Exist
      • Find Numbers with Even Number of Digits
    • Two Pointers
      • Remove Element
      • Replace Elements with Greatest Element on Right Side
      • Valid Mountain Array
      • Sort Array by Parity
      • Squares of a Sorted Array
      • Max Consecutive Ones
    • Sliding Window
      • Max Consecutive Ones 3
    • Stacks
      • Balanced Brackets
    • General Strings & Arrays
      • Move Zeros
      • Unique Elements
      • Merge Sorted Array
    • Matrices
      • Valid Square
      • Matrix Search Sequel
  • Trees
    • Untitled
  • Recursion
    • Introduction
    • Backtracking
      • Permutations
  • Dynamic Programming
    • Introduction
    • Minimum (Maximum) Path to Reach a Target
      • Min Cost Climbing Stairs
      • Coin Change
      • Minimum Path Sum
      • Triangle
      • Minimum Cost to Move Chips to The Same Position
      • Consecutive Characters
      • Perfect Squares
    • Distinct Ways
      • Climbing Stairs
      • Unique Paths
      • Number of Dice Rolls with Target Sum
    • Merging Intervals
      • Minimum Cost Tree From Leaf Values
    • DP on Strings
      • Levenshtein Distance
      • Longest Common Subsequence
  • Binary Search
    • Introduction
      • First Bad Version
      • Sqrt(x)
      • Search Insert Position
    • Advanced
      • KoKo Eating Banana
      • Capacity to Ship Packages within D Days
      • Minimum Number of Days to Make m Bouquets
      • Split array largest sum
      • Minimum Number of Days to Make m Bouquets
      • Koko Eating Bananas
      • Find K-th Smallest Pair Distance
      • Ugly Number 3
      • Find the Smallest Divisor Given a Threshold
      • Kth smallest number in multiplication table
  • Graphs
    • Binary Trees
      • Merging Binary Trees
      • Binary Tree Preorder Traversal
      • Binary Tree Postorder Traversal
      • Binary Tree Level Order Traversal
      • Binary Tree Inorder Traversal
      • Symmetric Tree
      • Populating Next Right Pointers in Each Node
      • Populating Next Right Pointers in Each Node II
      • 106. Construct Binary Tree from Inorder and Postorder Traversal
      • Serialise and Deserialise a Linked List
      • Maximum Depth of Binary Tree
      • Lowest Common Ancestor of a Binary Tree
    • n-ary Trees
      • Untitled
      • Minimum Height Trees
    • Binary Search Trees
      • Counting Maximal Value Roots in Binary Tree
      • Count BST nodes in a range
      • Invert a Binary Tree
      • Maximum Difference Between Node and Ancestor
      • Binary Tree Tilt
  • Practice
  • Linked Lists
    • What is a Linked List?
    • Add Two Numbers
      • Add Two Numbers 2
    • Reverse a Linked List
    • Tortoise & Hare Algorithm
      • Middle of the Linked List
  • Bitshifting
    • Introduction
  • Not Done Yet
    • Uncompleted
    • Minimum Cost For Tickets
    • Minimum Falling Path Sum
Powered by GitBook
On this page

Was this helpful?

  1. Graphs
  2. Binary Trees

Binary Tree Level Order Traversal

PreviousBinary Tree Postorder TraversalNextBinary Tree Inorder Traversal

Last updated 4 years ago

Was this helpful?

Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, level by level).

For example: Given binary tree [3,9,20,null,null,15,7],

    3
   / \
  9  20
    /  \
   15   7

return its level order traversal as:

[
  [3],
  [9,20],
  [15,7]
]

Breadth first search (level order traversal) is implemented using a queue.

Since binary trees either have a left or right node, we can keep track of this using 2 lists.

  • temp1 == values of all nodes at that level

  • temp2 == left & right nodes

For every node in our right child, we append to temp1 the values we come across.

We then append to temp2 the left and right nodes.

And then we recourse on temp2, after appending temp1 to our return list.

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def levelOrder(self, root: TreeNode) -> List[List[int]]: 
        to_ret = []
        
        def bfs(level):
            temp1, temp2 = [],[]
            if not level or not level[0]:
                return
            for node in level:
                temp1.append(node.val)
                if node.left:
                    temp2.append(node.left)
                if node.right:
                    temp2.append(node.right)    
            to_ret.append(temp1)
            bfs(temp2)
            
        
        bfs([root])
        return to_ret
https://leetcode.com/problems/binary-tree-level-order-traversal/